
                                                                      

 

 

 

 
 

 

 

 

 

 

 

 

 

Programming Guide - HAL API 
 

HAL-API for software development with 

m:explore ultra-wideband sensors 
 

 

 

 

 

 

 

 

 

 

 

 

Ilmsens GmbH 

Ehrenbergstraße 11 

98693 Ilmenau 

Germany 

 

Tel.: +49 3677 76130-30 

Fax: +49 3677 76130-39 

Email: hal-api@ilmsens.com 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

2 
 

Table of contents 
 

1 HAL API for m:explore UWB sensors ........................................................................... 3 

1.1 Introduction .............................................................................................................. 3 

1.2 Copyright and Disclaimer ........................................................................................ 3 

1.3 Platform support ....................................................................................................... 4 

1.4 Platform requirements .............................................................................................. 4 

1.5 HAL API setup ........................................................................................................ 5 

1.6 HAL API function reference .................................................................................... 5 

2 Ilmsens HAL API architecture and usage ....................................................................... 6 

2.1 State diagram of an m:explore sensor ..................................................................... 6 

2.2 Basic application program flow for single measurements ....................................... 7 

2.3 How to perform typical tasks using the HAL API ................................................... 8 

2.3.1 HAL API infrastructure .................................................................................... 8 

2.3.2 Sensor device handling ................................................................................... 10 

2.3.3 Setup, configuration, and query of sensor parameters .................................... 11 

2.3.4 Measurement management ............................................................................. 12 

2.3.5 Transfer of measured data to the user application .......................................... 14 

2.3.6 Memory-mapped direct access to the sensor(s) .............................................. 15 

3 Timing, data format, and basic processing of UWB data ............................................. 16 

3.1 Details on measurement timing ............................................................................. 16 

3.2 Format of measured data and required buffer size ................................................. 17 

3.3 Typical first processing steps for m:explore UWB data ....................................... 18 

4 Further resources and revision history .......................................................................... 21 

4.1 Further resources .................................................................................................... 21 

4.2 Document revision history ..................................................................................... 21 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

3 
 

1 HAL API for m:explore UWB sensors 

 

1.1 Introduction 

As a service to our customers who want to integrate Ilmsens UWB sensors into their software 

environment, Ilmsens offers a hardware abstraction layer (HAL) application programming 

interface (API) (“The software”) for the m:explore ultra-wideband (UWB) sensors. The HAL 

API comes in form of a dynamic library working on top of the device drivers with corre-

sponding C header files. This manual is a programming guide for the API. A software devel-

oper will find design and basic background information to ease application development. A 

reference manual with an up-to-date function description is provided separately by Ilmsens.  

 

The HAL API is available for different operating systems and allows device management, 

sensor configuration, acquisition configuration, and performing measurements. It abstracts 

from device- or digital interface-specific details as much as possible to enable portability of 

the application software. Future generations of the HAL API and Ilmsens UWB sensors will 

be developed with backward compatibility in mind. Product-specific extensions will extend 

the API rather than changing existing functions. 

 

By default, the HAL API is provided as software in binary (compiled) form for many popular 

operating systems. Should the provided functionality be insufficient for the customer's pur-

poses, please contact Ilmsens for other options (see section 4.1). We provide limited software 

support for the HAL API. To report problems, ask for help, or suggest improvements, please 

contact Ilmsens (see section 4.1). 

 

 

1.2 Copyright and Disclaimer 

 

Copyright © 2017 Ilmsens GmbH. All rights reserved. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-

INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE  

DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER 

LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM,  

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN THE SOFTWARE.  

 

All product and company names in this document may be the trademarks and tradenames of 

their respective owners and are hereby acknowledged. 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

4 
 

1.3 Platform support 

The HAL API is currently available for the following operating system platforms: 

 

 Windows™ Vista™ / Windows™ 7 / Windows™ 8.x / Windows™ 10 

o x86 (32 Bit) and x64 (64 Bit) versions 

 Standard Linux distributions (currently those based on Debian package management) 

o i386 (32 Bit), amd64 (64 Bit), armel (ARM ports) versions 

o Ubuntu LTS 14.04 "Trusty Tahr" and up  

o Ubuntu LTS 16.04 "Xenial Xerus" and up 

o Ubuntu 16.10 "Yakkety Yak" and up 

o Debian LTS 7 "Wheezy" and up 

o Debian 8 "Jessie" 

 

If you want to use the HAL API on other Linux distributions, please contact Ilmsens (see sec-

tion 4.1). Support may be possible, if a sufficient development C/C++ tool chain is available 

for your distribution and Ilmsens has access to a reference installation. 

 

Support for other platforms, such as MacOS™, Solaris™, FreeBSD, etc., may be added in the 

future. 

 

 

1.4 Platform requirements 

The HAL API works on top of the device drivers provided with your m:explore sensor and 

requires the sensor(s) to be connected to the computer and powered on for useful operation. 

Therefore, these platform requirements apply: 

 

 Any of the supported operating systems listed under section 1.3 

 USB2.0 host port  

 Windows OS™: 

o USB device drivers provided with the Ilmsens m:explore evaluation kit 

o Microsoft Visual C++™ redistributable runtime in a matching version (includ-

ed in the HAL package, usually already installed on Windows™ PCs) 

 Linux OS: 

o LibUSB-1.0-0:  V1.0.11 (or later) package installed 

o LibPocoFoundation9:  V1.3.6 (or later) package installed 

o Device driver integrated into HAL API deb-package 

 C/C++ development environment with dynamic library import  

o Free Microsoft™ Visual C++ Express 2012 and up supported 

o Linux:   gcc 4.7.2 or later (5.x.x may work but was not tested) 

 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

5 
 

1.5 HAL API setup 

Please consult the separate "Ilmsens HAL API Setup Guide" for a description of the setup 

procedure. It also contains information on how to test a successful installation of the library. 

 

 

1.6 HAL API function reference 

 

This programming guide concentrates on HAL design and background information to help the 

developer building functional and efficient applications with the library. The contents of this 

guide will be valid for multiple revisions of the HAL API and is likely to change only with a 

new major release number. All functions mentioned throughout the document will be de-

scribed in detail in the separate "Ilmsens HAL API Function Reference". The reference is 

updated and extended with every new revision and you will receive the corresponding version 

with your HAL API software. 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

6 
 

2 Ilmsens HAL API architecture and usage 

 

The basic view of the HAL on m:explore sensors is that of UWB measurement devices that 

feature similar (or identical) hardware properties and produce raw measured data in regular 

time intervals when a measurement run was started. It does not include any processing of the 

raw data (compare hints in chapter 3). The API is designed to support multiple devices meas-

uring in parallel, but can also operate a single device, of course. 

 

When multiple m:explore sensors are being used, they can either work independently (no 

physical synchronisation connection) or can work in a fully synchronous configuration, where 

the RF system clock is shared among all devices and a digital synchronisation connection is 

used. In the latter case, one of the sensors is declared as a master device while the remaining 

sensors are working as slaves. The master is responsible for triggering measurement runs and 

data counter resets for all slave modules, which ensures a fully synchronous and repeatable 

acquisition timing, i.e. data from each sensor is recorded at the same time. If independent sen-

sors are used, all active modules must be declared as masters. If a measurement is started, the 

corresponding command is sent to the devices subsequently leading to a certain (usually small 

in the ms-range, but unknown) latency between data from different modules. Since the user is 

responsible for the hardware setup, the HAL API cannot know which mode - independent or 

synchronous operation - is being used. Consequently, the application software must take care 

of proper master/slave configuration and triggering of digital synchronisation. 

 

The following sections introduce the abstract state machine of an m:explore sensor node as 

well as typical tasks an application may perform using the HAL API. 

 

 

2.1 State diagram of an m:explore sensor 

 

 
Fig. 2.1: Simplified state diagram of m:explore sensors 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

7 
 

The state diagram in figure Fig. 2.1 shows the simplified processes in each sensor module. 

Some state transitions are caused by hardware (blue events), some are caused by internal tim-

ing (black events), and some are caused by the computer using the HAL API (red events). 

Correct parameter setup is required before a measurement can be started. 

 

While a measurement is running, acquired data is stored in a device-internal ring buffer. The 

application is required to poll the buffer fill level and retrieve measured data, when one or 

more complete datasets are in the buffer. The HAL API provides corresponding functions. 

The application typically implements a state machine like in Fig. 2.2. If multiple sensors are 

measuring, the application may query and transfer data from the sensors subsequently. How-

ever, since the sensors produce data in fixed regular intervals, average retrieval speed of the 

application must be fast enough to avoid buffer overflows. The HAL API supports application 

timing in this regard by providing an (optional) threaded measurement mode where the data 

transfer to the computer is completely handled inside the HAL. 

 

 

 
Fig. 2.2: Simplified data retrieval state machine for application 

 

 

2.2 Basic application program flow for single measurements 

The most basic application performing a single measurement with m:explore sensors must 

perform the following steps: 

 

1. Initialise HAL API (this will detect sensors attached to the computer) 

2. Open sensor connections to activate the modules 

3. Setup basic parameters such as M-Sequence order and RF system clock rate 

4. Setup Master/Slave mode for all modules 

5. Trigger digital synchronisation 

6. Reset M-sequence transmitters 

7. Setup measurement parameters (such as number of averages and wait cycles) 

8. Start a measurement 

9. Retrieve measured data - repeat until enough data was read (compare Fig. 2.2) 

10. Stop measurement 

11. Close sensor connections to deactivate them in the HAL 

12. de-initialise HAL API 

 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

8 
 

2.3 How to perform typical tasks using the HAL API 

The HAL provides functions to accomplish different tasks. These can be roughly grouped into 

the following topics 

 

 HAL API infrastructure 

o Init/De-Init 

o Enumerate/detect sensors attached to the computer 

o Retrieve API information 

o Setup of debug level 

 Sensor device handling 

o Open communication with sensor (activate) 

o Reading the unique sensor ID 

o Close communication with sensor (deactivate) 

 Setup, configuration, and query of sensor parameters 

o Basic parameters (e.g. M-sequence order) 

o Query sensor configuration and status (e.g. device temperature) 

o Setup master/slave mode 

 Measurement management 

o Digital synchronisation between multiple sensors 

o Control of sensor transmitter (e.g. power down) 

o Acquisition parameters (e.g. number of synchronous averages) 

o Start of measurement run 

o Stop of measurement run 

 Transfer of measured data to the user application 

o Query data availability 

o Retrieve data from HAL 

 Memory-mapped direct access to the sensor(s) 

o Register access 

o Memory access 

 

 

2.3.1 HAL API infrastructure 

When a user application starts or is reset, it must take care to load the HAL library into its 

context. Every development environment provides a different means to do so. After loading 

the library and before any HAL functions can be used, internal resources of the library must 

be prepared. This is done by a dedicated initialisation call. This first task is internally com-

bined with sensor device enumeration, i.e. the library detects active sensors attached to the 

computer. The corresponding HAL function is: 

 

 ilmsens_hal_initHAL() 
 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

9 
 

The function allocates common HAL resources and returns the total number N of sensors that 

could be found during enumeration (or a negative error code). If that number is smaller than 

what was actually connected to the computer, check these issues: 

 

 Power supply of sensors is on. 

 USB connectors are safely attached and the cables are not broken. 

 USB driver setup may be necessary in some OSs, if you connect a sensor to an USB 

port for the first time. When the installation process is not completely finished, the 

HAL will not detect such a sensor. 

 Some computers use external USB ports, e.g. on an add-in card (PCI, PCMCIA, PCIe, 

etc.), or the sensor is attached via an USB hub. In some cases, enumeration of such 

sensors is not possible (especially if the USB bus power is not sufficient). You should 

try to use another USB port. Ports directly provided by the chipset of your computer 

tend to work well in most cases. 

 

For most other HAL functions, a list of sensors that will be addressed by that function must be 

given. The list contains sensor numbers. The number of a specific sensor corresponds to the 

detection order during enumeration, i.e. the number can be 1 .. N. The user application never 

has to deal with interface handles or the like. While the HAL is initialised, the sensor number 

for a device does not change and sensors attached after the call to ilm-

sens_hal_initHAL() will be ignored. However, when the HAL is closed (see below) 

and re-initialised it cannot be guaranteed, that the number for an individual sensor stays the 

same. Please also note that the order in which sensors are attached to the computer might or 

might not have influence on the enumeration process (which depends on the OS). Therefore, 

you should read out the sensor ID (see section 2.3.2) to identify a specific device every time 

you initialise the HAL. 

 

At any time during HAL operation, you may query common information about the library. 

Especially, the specific version and build number of the library can be useful, if you are using 

different variants in your projects: 

 

 ilmsens_hal_getVersion(...) 
 

During usage of  the HAL API, internal errors, warnings, and events are logged. The log mes-

sages can be useful for tracking down problems or bugs in the HAL or user application. You 

can influence the verbosity of logging by setting the debug level: 

 

 ilmsens_hal_setDEBLevel(...) 
 

It is recommended to use a high debug level during application development (which will de-

grade performance), but a reasonably low level during production use/real measurements. 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

10 
 

By default, all HAL log messages are output to standard output, e.g. typically appearing at the 

console depending on your environment. You can redirect the standard output appropriately, 

if your application has no console to display the log messages. 

 

When all operations with sensors are finished, the HAL API must be closed by calling the 

following function: 

 

 ilmsens_hal_deinitHAL() 
 

It releases all common HAL resources and closes still opened sensor connections. The enu-

meration order of sensors becomes invalid, too. The function will always succeed. 

 

When the user application is closed, please ensure that the HAL API is closed before the li-

brary is unloaded. Otherwise, memory leaks or undefined behaviour may result. Especially if 

you detect any kind of error while using the HAL and shut down your application, you should 

still close the HAL correctly. 

 

 

2.3.2 Sensor device handling 

Enumerated sensors are identified by their ordering number when the HAL was initialised. 

Before a sensor can be used for any other operation, the communication connection must be 

opened, i.e. the sensor must be activated in the HAL 

 
 ilmsens_hal_openSensors(...) 

 

You can open multiple sensors at a time by listing their order numbers in the function call. 

The return value is either an error (negative number) or the success code. In case the sensors 

could not be opened successfully, it is not recommended to continue with any operation other 

than closing all sensors and closing the HAL. 

 

If you are done using a sensor, call the following function to close the communication channel 

and deactivate the device in the HAL: 

 
 ilmsens_hal_closeSensors(...) 

 

Again, a list of sensor numbers must be provided.  

 

To identify a specific sensor among all active devices, a unique ID string can be retrieved 

using the following function, which takes a single order number only: 

 
 ilmsens_hal_getModId(...) 

 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

11 
 

2.3.3 Setup, configuration, and query of sensor parameters 

The m:explore sensors require to be setup with correct basic parameters like the order of the 

employed M-sequence and the HAL needs to know additional device properties (e.g. the actu-

al RF system clock rate) to ensure proper internal buffer management and data transfer tim-

ing. The setup of these basic parameters is required when a sensor is powered on and activat-

ed in the HAL for the first time in a session, i.e. when a sensor is subsequently activated and 

deactivated several times without de-initialising the HAL, an initial configuration is enough. 

The required parameters can be obtained from the hardware manual of the device and setup 

can be done in a single API call: 

 

 ilmsens_hal_setupSensors(...) 
 

As mentioned at the beginning of  this chapter, multiple devices should have the same or simi-

lar parameters when they are used in parallel. The function takes a list of sensor order num-

bers and allows setting up multiple devices with the same parameters in one call. The follow-

ing basic parameters must be defined: 

 

 RF system clock rate of the sensor f0 [GHz] 

 M-Sequence order (currently 9,12, or 15) 

 Oversampling factor (defaults to 1) 

 Subsampling factor (defaults to 512) 

 Number of transmitters in the device (defaults to 1) 

 Number of Receivers in the device (defaults to 2) 

 

It is possible to indicate to the HAL, that the default values shall be used for some of the pa-

rameters. However, a call to the setup function is mandatory to ensure correct functioning of 

the device and the HAL. 

 

When the user application changes the basic parameters, it is required to re-trigger digital 

synchronisation between the sensors (compare section 2.3.4 and Fig. 2.1). 

 

After parameter setup, the application can query the sensors' properties at any time during a 

HAL session. In addition to the basic parameters, further information on the state and proper-

ties of the device are reported. The corresponding function is: 

 

 ilmsens_hal_getModInfo(...) 
 

Like in the case of retrieving the devices' ID string, this function only takes a single order 

number. The following parameters are reported: 

 

 RF system clock rate of the sensor f0 [GHz] 

 M-Sequence order 

 Oversampling factor 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

12 
 

 Subsampling factor 

 Number of transmitters in the device 

 Number of Receivers in the device 

 Device-internal temperature 

 Number of averages and wait cycles, including their limits (compare section 2.3.4) 

 Number of samples per impulse response (useful for data management) 

 ADC full scale range and resolution (in Volts) 

 

As mentioned in the introduction of this chapter, m:explore sensors can be set to master or 

slave mode depending on whether multiple devices are physically connected for synchronisa-

tion (exactly one device must be master, all others slaves) or are working independently (all 

devices must be masters). If there is only a single device used, it must be set to master mode. 

The setup of master/slave mode must always be performed just like the call to the sensor setup 

described above. The following function set the mode: 

 

 ilmsens_hal_setMaster(...) 
 

When the basic parameters and master mode are setup for all activated sensors, the applica-

tion may trigger digital synchronisation, setup measurement-related parameters, and start or 

stop measurements as described in the following section. 

 

 

2.3.4 Measurement management 

Before a measurement can be started, it is required to perform digital synchronisation. This is 

regardless whether a single sensor is being used, or multiple sensors are employed (independ-

ent and connected setups). When any property of the previous section 2.3.3 changes, digital 

synchronisation must be revoked and re-triggered again. Both tasks can be performed using 

the following function: 

 
 ilmsens_hal_synchMS(...) 

 

The function takes a list of sensor order numbers which contains all devices that should be 

synchronised. As a second parameter, the user application can request to revoke or trigger 

digital synchronisation. 

 

After digital synchronisation, the M-sequence generator (transmitter) of each device should be 

reset to ensure repeatable alignment of the transmitters and receivers. A call to the following 

function also ensures a proper start-up of the transmitter electronics: 

 
 ilmsens_hal_setMLBS(...) 

 

The reset typically takes a few ms to complete and cannot be used to mute the transmitter(s). 

There is a specialised function that activates or de-activates a power-down feature on the 

transmitters of the requested sensors: 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

13 
 

 

 ilmsens_hal_setPD(...) 
 

Power down can only be changed, when no measurement is running. Besides the list of sensor 

order numbers, the function takes a flag to decide the state of the power down feature. If the 

user application controls an m:explore sensor network, it can decide to activate different 

transmitters between measurements. 

 

Another set of parameters that should be setup by the user application and that can be changed 

only in between measurement runs, regards measurement speed and acquisition aperture. 

m:explore sensors use synchronous averaging of repeatedly recorded signal periods in order 

to improve signal-to-noise ratio (SNR) as well as lower the amount of data to be transferred to 

the computer. Optionally, the user can insert wait cycles. This process is realised in the sensor 

hardware and is illustrated in Fig. 2.1. Details regarding averaging and wait cycles are de-

scribed in section 3.1. Both values are set with this function: 

 
 ilmsens_hal_setAvg(...) 

 

Because the data transfer timing is influenced by these settings, the function can only be used 

when no measurement in running. 

 

Finally, the user application can start (and subsequently stop) a measurement run. A meas-

urement can be started either with all activated sensors or with a subset of them. When using 

only a subset, some restrictions apply: 

 

 Independent sensors must be masters 

 Connected sensors can only be operated, when the master device is included in the 

measurement run. The slave modules to be used must be included as well. 

 Slave modules cannot be used without their master module 

 

The functions for starting and stopping a measurement are as follows: 

 

 ilmsens_hal_measRun(...) 
 ilmsens_hal_measStop(...) 

 

While a measurement is running, the application must regularly poll the HAL for new data 

and retrieve it when available (compare section 2.3.5). Each m:explore features a ring buffer 

for relaxing the data transfer timing. However, the capacity of the buffer is limited and laten-

cies occurring in the computer (e.g. caused by OS or user application) may cause a buffer 

overflow. In such a case, some measured data will be lost. However, the measurement and 

application can continue to run. The HAL provides different measurement modes to help 

avoid such situations and allow flexible user application design. The function ilm-

sens_hal_measRun(...) takes a mode flag, which selects one of the following options: 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

14 
 

 RUN_RAW: polling of buffer fill state and data transfer is fully under control of the 

user application, i.e. no background operations are performed by the HAL 

 RUN_BUF: the HAL uses a separate internal thread to poll and drain the devices' 

ring buffers. Data is copied into an internal HAL ring buffer on the computer, which 

can be much larger and consequently accommodate longer latencies of the application. 

 

Buffered mode is the preferred mode of operation for the HAL. However, in this case further 

communication of the application with the devices by using HAL functions is prohibited (ex-

cept ilmsens_hal_measStop() or ilmsens_hal_getModInfo()), since the internal meas-

urement thread needs exclusive access to the sensors. In raw mode, the user application has 

exclusive access. Furthermore, buffered mode requires more resources (additional CPU thread 

and memory) than raw mode. 

 

 

2.3.5 Transfer of measured data to the user application 

For flexible user application design, the HAL provides blocking and non-blocking functions 

for measurement data transfer. The blocking case is the most simple way to retrieve data. 

Simply call the following function: 

 
 ilmsens_hal_measGet(...) 

 

Again, this function takes a list of sensor order numbers and blocks, until one dataset has been 

received from every sensor in the list. Only sensors, which were included when the measure-

ment was started, can be queried. Please note that the application can specify a timeout, i.e. 

the call blocks as long as there is no new data up to the given timeout. The return value identi-

fies, if new data was retrieved during the call. 

 

The non-blocking data transfer functions allow to query, how many datasets are available in 

the buffers using the following call: 

 

 ilmsens_hal_measRdy(...) 
 

The call returns immediately after querying the devices' ring buffers and allows the applica-

tion to decide, when data is actually received from the HAL. It returns the number of com-

plete datasets that is available (i.e. the minimum number of new datasets that was available 

from all measuring sensors). If new data is available, the user application can subsequently 

call the corresponding read function to copy one complete dataset: 

 

 ilmsens_hal_measRead(...) 
 

The format of returned measurement data will be explained in chapter 3. As mentioned be-

fore, the user application must retrieve data from the sensors on average at least as fast as data 

is produced by them. The intermediate buffers in the devices and/or the HAL only serve to 

accommodate latencies and relax the real-time requirements on the application. 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

15 
 

2.3.6 Memory-mapped direct access to the sensor(s) 

Most of the HAL functions are internally translated into sequences of register or memory ac-

cesses. The HAL API provides functions for direct access, but it is the responsibility of the 

user application to avoid actions that put the sensor in an unknown state or break the internal 

functioning of the HAL. For example, if you set the M-sequence order directly by writing the 

corresponding sensor register, the HAL does not know about it and internal buffer manage-

ment is no longer consistent with the sensor’s setup – data transfer is most likely to fail in 

such a case. Furthermore, register and memory locations as well as the associated functions  

may change with new sensor generations. Direct access is provided for testing, development, 

and most notably debugging of issues occurring during measurements. A register reference 

and memory map can only be obtained from Ilmsens upon special request by the customer for 

specific tasks coordinated with Ilmsens and usually requires an NDA. One of the big ad-

vantages of a HAL is precisely to hide such product-specific details from a user application. 

Applications using direct register/memory access are likely to be bound to a specific HAL 

version and sensor generation and may not work on older/newer versions or devices. 

 

The memory map of the sensors can be accessed as single locations (registers) or as memory 

blocks. The address space is 32 bit wide and increments in bytes. However, the memory gran-

ularity is 4 byte, i.e. you cannot access addresses that are not dividable by 4 (the two LSBs of 

all addresses must be ‘00’). Please note that not all addresses are mapped to physical memory. 

The following functions are included for single register access: 

 
 ilmsens_hal_readReg(...) 
 ilmsens_hal_writeReg(...) 

 

As with most other HAL functions, multiple sensors can be queried in one call. The following 

two functions provide access to memory blocks: 

 
 ilmsens_hal_readBlk(...) 
 ilmsens_hal_writeBlk(...) 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

16 
 

3  Timing, data format, and basic processing of UWB data 

 

3.1 Details on measurement timing 

When planning a measurement application, different competing issues must be consolidated. 

Since the device uses a periodic UWB signal, acquired data can be averaged coherently to 

improve signal-to-noise ratio (SNR). A high averaging number results in higher SNR, but it 

also means that the acquisition aperture (the time for recording a complete signal period incl. 

averages) becomes longer and consequently measurement speed is reduced. Please note that 

this aperture relates to the maximum amount of change in your device under test/scenario 

under test that can be correctly represented in the measured data and a compromise between 

SNR improvement and measurement speed reduction must often be made. Depending on the 

measurement task, a very short acquisition aperture may be required. When the number of 

averages is reduced, the measurement rate increases, i.e. the data stream between the comput-

er and sensor also increases and the application must be able to handle and/or process that 

amount of data sufficiently fast.  

 

The provide the user with some flexibility regarding the trade-off between acquisition aper-

ture and measurement speed, the m:explore sensors can be operated in a continuous or a 

snapshot mode. In both cases, the number of averages defines the duration of the acquisition 

aperture. In continuous mode (the default), repetition rate is as high as possible, i.e. after 

completing an averaging cycle, the next cycle is immediately started. In snapshot mode, wait 

cycles are added between averaging cycles. During a wait cycle, acquired data is discarded 

and no new output is copied to the ring buffer. This way, a short acquisition aperture (low 

number of averages) can be combined with a low measurement rate (high number of wait cy-

cles) to give the application enough time for data handling and processing. The rough sensor-

internal process is shown in the state machine of Fig. 2.1. 

 

The HAL API allows setting the number of averages and wait cycles via the ilm-

sens_hal_setAvg() call (see section 2.3.4).  Please note, that a minimum amount of averag-

ing (so-called 'hardware averages', HW averages) is always done by the sensors and cannot be 

changed. The values set by the HAL influence acquisition and waiting duration as multiples 

of HW average duration. The number of HW averages (HWAvg) can be obtained using the 

ilmsens_hal_getModInfo() call (see section 2.3.3 above). 

 

The following rhythm is performed inside the sensor while a measurement is running: 

 

1. Acquire a single period with hardware averages (HWAvg) 

a. Record all samples of a signal period 

b. Average the new samples with previous data 

c. If current HW averages are less than HWAvg, go to a. otherwise to d. 

d. Copy averaged data to intermediate buffer and reset average counter 

e. Trigger step 2., then go to a. 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

17 
 

2. Perform software averages (SWAvg) (triggered by step 1.) 

a. Wait for trigger from step 1. 

b. If current software averages are less than SWAvg go to c. otherwise go to 3. 

c. Average data in intermediate buffer with previous data, then go to a. 

3. Perform wait cycles (WC) 

a. Wait for trigger from step 1. 

b. If current wait cycles are less than WC go to a. otherwise to step 4. 

4. Reset software average and wait cycle counters go to step 1. 

 

The following equations provide the relation between the systems parameters (M-sequence 

order m, RF system clock rate f0, sampling clock pre-scaler D, HWAvg, SWAvg, WC, which 

can all be obtained via calling ilmsens_hal_getModInfo(...)): 

 

NSamp  =  2m - 1    (3.1) 

TIRF  =  1 /f0 ∙ D ∙ NSamp  (3.2) 

THW-Avg= (HWAvg + 1) ∙ TIRF  (3.3) 

TAP = TSW-Avg = SWAvg ∙ THW-Avg   (3.4) 

TWait = WC ∙ THW-Avg    (3.5) 

TTot = TSW-Avg + TWait   (3.6) 

fMeas = 1 / TTot    (3.7) 

 

with number of samples per period NSamp, measurement aperture of a single period TIRF, time 

interval for a single hardware averaging cycle THW-Avg, acquisition aperture TAP (equals the 

time for completing software averages TSW-Avg), time interval for wait cycles TWait (can be 0!), 

and finally total cycle time TTot or its inverse - the measurement rate fMeas. 

 

If wait cycles are set to 0 (the default), all hardware averaged data is processed and contrib-

utes to the final values sent to the computer after TTot - i.e the whole cycle time is used for 

averaging. When the number of software averages is low, a high measurement rate fMeas re-

sults. Setting WC to a non-zero value (this is snapshot mode) and choosing a low value for 

SWAvg allows combining a short acquisition aperture TAP with a low measurement rate fMeas. 

 

 

3.2 Format of measured data and required buffer size 

The data from each sensor is read into an internal buffer and then copied to the user applica-

tion buffer by the HAL functions ilmsens_hal_measGet(...) or ilm-

sens_hal_measRead(...) (see section 2.3.5). It is returned as an array of 32 bit integer val-

ues (data type int32_t). The total size of the buffer NumEl can be calculated from the basic 

parameters of all sensors included in the call: 

 





1

)(
1

)()(2)()(
i

NumSen

imOrder
i

NumSen

imRximOViNumberOfRxieChannelsizNumEl    (3.8) 

 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

18 
 

where NumSen is the number of sensors in the order number list given to the data retrieval 

function calls (compare section 2.3.5) and the other parameters are obtained from the sensor 

information call ilmsens_hal_getModInfo(...) (see section 2.3.3 above). If all sensors 

have the same setup, eq. (3.8) reduces to: 

 

NumSenimRximOVNumEl imOrder  )()(2 )(  (3.9)  

 

In any case, the application must make sure, that the buffer provided to the HAL is large 

enough to hold all returned values. Due to the properties of the UWB signal used in 

m:explore sensors (an M-sequence) the actual data vector per RX channel has only (2mOrder-

1).mOV entries, e.g. a 9th order example sensor with the default oversampling of 1 delivers 

511 samples per channel. The remaining entries in the return buffer (i.e. 1 additional int32_t 

per Rx channel of the sensor) are filled with status information regarding for the dataset.  

 

Currently, only the first additional value for Rx 1 of each sensor in the result buffer (found at 

offset buffer[(2mOrder(1).mOV(1))-1] for the first sensor in the order number list, at buff-

er[(2mOrder(1).mOV(1).mRx(1))+(2mOrder(2).mOV(2))-1] for the second one, etc.) is the se-

quence  counter. It is reset to 0 at the start of a measurement and increased with every new 

measurement realisation (after the complete averaging and waiting process). The user applica-

tion should check this value to detect lost datasets. For example, of the computer is too slow 

or too busy with other tasks, the sensors may not be read out fast enough. In such a case, the 

sequence counter will not be consecutive. Furthermore, when the multiple sensors are physi-

cally connected and hardware synchronised, the sequence counters of all sensors should be 

the same for every new dataset retrieved by the user application. Fig. 3.1 depicts a memory 

map for an example setup with two 9th order m:explore devices included in the measurement 

run. 

 

 
Fig. 3.1: Memory map of example setup with two measuring 9th order m:explore sensors 

 

 

3.3 Typical first processing steps for m:explore UWB data 

The HAL API does not do any calculations with the measured data. For example, if you want 

to obtain impulse responses from the raw samples values xraw, you have to calculate propor-

tional scaling and the correlation with the ideal M-sequence in the user application. These 

steps will be shortly explained here. 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

19 
 

Sample data is delivered as 32 bit integers instead of floating point values to retain maximum 

quantisation accuracy as delivered by the ADCs in the sensors. For the same reason, the aver-

aging process in the devices (compare section 3.1) actually only accumulates sample values 

xacc according to eq. (3.11), i.e. it does not perform the normalisation of eq. (3.12) by the 

number of total averages p to obtain the final averaged sample xavg: 

 

p =  HWAvg  ∙ SWAvg (3.10) 





1

)(
i

p
accraw ixxx    (3.11) 





1

)(
1 i

p
accavg ix

p
pxx   (3.12) 

 

Therefore, the first typical processing step is the normalisation of each sample by the number 

of total averages p, which can be obtained by eq. (3.10). In order to avoid loss of accuracy and 

increase of quantisation noise, it is recommended that the application converts the sample 

values into double precision floating point format (double) before applying the division. This 

step must be applied to each sample in the signal period for each receive channel. 

 

If your application requires the measured data to be expressed in physical units, the normal-

ised data can be converted to voltages by using the LSB voltage of the ADCs in the sensors. 

This value can be obtained from the ilmsens_hal_getModInfo(...) call (see section 2.3.3 

above). The application can use eq. (3.13) to do the conversion: 

 

xvolts =  xavg ∙ mLSB_Volt  (3.13) 

 

Of course, this step must be applied to each sample individually and can easily be combined 

with the normalisation of eq. (3.12). However, if only relative amplitudes are required, the 

conversion to volts can be skipped. 

 

Since m:explore sensors are using Ilmsens' unique M-sequence technology, measured data 

must be cross-correlated with the ideal M-sequence Mideal in order to obtain the actual impulse 

response of the device/scenario under test. Please note, that all signals involved are periodic 

signals, i.e. the correlation must be performed as a cyclic correlation as defined by eq. (3.14): 

 

dttMtxirf ideal

T

volts

IRF

)()()(      (3.14) 

 

The ideal M-sequence Mideal is a binary signal with the only values +1 and -1. It is not DC-

free, since the number of samples NSamp is odd (compare eq. (3.1)). The sequence matching 

your sensor is delivered as a text file (e.g. 'mlbs_9.txt' for a 9th order device) in the software 

package as a reference for your application. Please note, that for most M-sequence orders, 

more than one generating polynomial exists, i.e. you must use the one implemented in the 

devices' transmitter.  



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

20 
 

A fast alternative to directly calculating the integral of eq. (3.14) is using the Fast Fourier 

Transform (FFT). An even faster option is the Fast Hadamard Transform (FHT). Very similar 

to the FFT, this transform can benefit from the butterfly algorithm and can be implemented 

using only additions and subtractions instead of complex multiplications (required for FFT). 

Details on the relation between M-sequence correlation and Hadamard Transform can be 

found in the literature, e.g.: 

 

 M. Cohn and A. Lempel: "On fast m-sequence transforms", IEEE Transactions on

 Information Theory, vol. 23, no. 1, pp. 135-137, 1977 

 

Further processing largely depends on the customers' measurement task and measurement 

setup. For example, if you are interested in the frequency response function rather than the 

impulse response function for your task, FFT can be used at any time to go to the frequency 

domain. Like with any other microwave measurement technology, the result of Fourier Trans-

form only represent the real frequency content of the received analogue signal, if all stages in 

the receiving chain (e.g. LNAs, UWB-receivers in the m:explore, ADC analogue input) work 

in their linear region - receiver saturation or signal compression must be avoided. 

 

Ilmsens has rich experience with a versatile pool of different UWB applications - including 

but not limited to: UWB ranging, localisation, through-wall radar, remote monitoring of vi-

tality data (breathing/heartbeat), non-destructive testing of building materials, impedance 

spectroscopy of liquid and solid materials, etc. If you need assistance with data processing 

and handling for your application, Ilmsens provides consulting services. Please contact in-

fo@ilmsens.com for the options offered. 



Ilmsens HAL API Programming Guide V1.2 (01/2017) 
 

21 
 

4  Further resources and revision history 

4.1 Further resources 

For further information please visit our website at www.ilmsens.com.  

 

The following documents provide additional information for development: 

 

 Measurement hardware and device drivers: "Ilmsens Hardware Manual m:explore" 

(provided with your m:explore Evaluation Kit) 

 Drivers and Ilmsens application software: "Ilmsens Software Manual m:explore" 

 HAL API setup info: "Ilmsens HAL API Setup Guide" 

 HAL API function reference: "Ilmsens HAL API Function Reference" 

 

If you need assistance with the HAL API feel free to contact us at: 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Document revision history 

 

Rev. Date Author Description 

1.0 10/2016 Her Initial revision for the m:explore HAL API manual 

1.1 01/2017 Her Major API improvements, update of supported platforms, added 

explanations for buffers/data format, minor corrections 

1.2 01/2017 Her Split the doc in programming guide (this) and separate installa-

tion guide as well as separate function reference guide produced 

by DoxyGen (PDF-version, HTML-version, etc.) 

    

    

    

    

    

 

Ilmsens GmbH 

Ehrenbergstraße 11 

98693 Ilmenau 

Germany 

 

Tel.: +49 3677 76130-30 

Fax: +49 3677 76130-39 

Email: hal-api@ilmsens.com 


